博客
关于我
输入两个正整数m 和n,求其最大公约数和最小公倍数 (Java经典编程案例)
阅读量:733 次
发布时间:2019-03-22

本文共 1031 字,大约阅读时间需要 3 分钟。

输入两个正整数m和n,求其最大公约数和最小公倍数

在编程中,求两个正整数的最大公约数(GCD)和最小公倍数(LCM)是一个常见的问题。本文将详细介绍一种高效的求解方法。

思路分析

最大公约数可以通过辗转相除法来求解。具体步骤如下:

  • 在循环中,只要除数不等于0,继续执行。
  • 将较大的数除以较小的数,取余数。
  • 将余数作为新的较小的数,将原来的较小的数作为新的较大的数。
  • 重复上述步骤,直到较小的数为0,此时较大的数即为最大公约数。
  • 最小公倍数则可以通过公式:最小公倍数 = 两个数的乘积 / 最大公约数来计算。
  • 代码示例

    以下是实现上述方法的Java代码:

    public class Example {  
    public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("请输入正整数m的值:");
    int m = scanner.nextInt();
    System.out.print("请输入正整数n的值:");
    int n = scanner.nextLong();
    int a = division(m, n);
    int b = (m / a) * n; // 可以直接使用 m * n / a 来计算
    System.out.println(m + "和" + n + "的最大公约数为:" + a + ",最小公倍数为:" + b);
    }
    public int division(int x, int y) {
    int temp;
    while (y != 0) {
    temp = x % y;
    x = y;
    y = temp;
    }
    return x;
    }
    }

    执行结果

    运行上述代码并输入两个正整数,程序将输出它们的最大公约数和最小公倍数。

    总结

    通过上述方法和代码,我们可以快速且高效地求解两个正整数的最大公约数和最小公倍数。这种方法不仅适用于编程,还可以在数学计算中得到实际应用。

    转载地址:http://vezwk.baihongyu.com/

    你可能感兴趣的文章
    nc命令详解
    查看>>
    NC综合漏洞利用工具
    查看>>
    ndarray 比 recarray 访问快吗?
    查看>>
    ndk-cmake
    查看>>
    NdkBootPicker 使用与安装指南
    查看>>
    ndk特定版本下载
    查看>>
    NDK编译错误expected specifier-qualifier-list before...
    查看>>
    Neat Stuff to Do in List Controls Using Custom Draw
    查看>>
    Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
    查看>>
    Needle in a haystack: efficient storage of billions of photos 【转】
    查看>>
    NeHe OpenGL教程 07 纹理过滤、应用光照
    查看>>
    NeHe OpenGL教程 第四十四课:3D光晕
    查看>>
    Neighbor2Neighbor 开源项目教程
    查看>>
    neo4j图形数据库Java应用
    查看>>
    Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
    查看>>
    Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
    查看>>
    Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
    查看>>
    Neo4j安装部署及使用
    查看>>
    Neo4j电影关系图Cypher
    查看>>
    Neo4j的安装与使用
    查看>>